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CS 188: Artificial Intelligence

Spring 2010

Lecture 21: DBNs, Viterbi, Speech 

Recognition

4/8/2010

Pieter Abbeel – UC Berkeley

Announcements

� Written 6 due tonight

� Project 4 up!

� Due 4/15 – start early!

� Course contest update

� Planning to post by Friday night
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P4: Ghostbusters

� Plot: Pacman's grandfather, Grandpac, 

learned to hunt ghosts for sport.  

� He was blinded by his power, but could 

hear the ghosts’ banging and clanging.

� Transition Model: All ghosts move 

randomly, but are sometimes biased

� Emission Model: Pacman knows a 

“noisy” distance to each ghost
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Today

� Dynamic Bayes Nets (DBNs)

� [sometimes called temporal Bayes nets]

� HMMs: Most likely explanation queries

� Speech recognition

� A massive HMM!

� Details of this section not required

� Start machine learning
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Dynamic Bayes Nets (DBNs)

� We want to track multiple variables over time, using 

multiple sources of evidence

� Idea: Repeat a fixed Bayes net structure at each time

� Variables from time t can condition on those from t-1

� Discrete valued dynamic Bayes nets are also HMMs
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Exact Inference in DBNs

� Variable elimination applies to dynamic Bayes nets

� Procedure: “unroll” the network for T time steps, then 

eliminate variables until P(XT|e1:T) is computed

� Online belief updates: Eliminate all variables from the 

previous time step; store factors for current time only
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DBN Particle Filters

� A particle is a complete sample for a time step

� Initialize: Generate prior samples for the t=1 Bayes net

� Example particle: G1
a = (3,3) G1

b = (5,3) 

� Elapse time: Sample a successor for each particle 

� Example successor: G2
a = (2,3) G2

b = (6,3)

� Observe: Weight each entire sample by the likelihood of 

the evidence conditioned on the sample

� Likelihood: P(E1
a |G1

a ) * P(E1
b |G1

b ) 

� Resample: Select prior samples (tuples of values) in 

proportion to their likelihood
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SLAM

� SLAM = Simultaneous Localization And Mapping

� We do not know the map or our location

� Our belief state is over maps and positions!

� Main techniques: Kalman filtering (Gaussian HMMs) and particle 

methods

� [DEMOS]

� [intel-lab-raw-odo.wmv, intel-lab-scan-matching.wmv, 

visionSlam_heliOffice.wmv]
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Today

� Dynamic Bayes Nets (DBNs)

� [sometimes called temporal Bayes nets]

� HMMs: Most likely explanation queries

� Speech recognition

� A massive HMM!

� Details of this section not required

� Start machine learning
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Speech and Language

� Speech technologies
� Automatic speech recognition (ASR)

� Text-to-speech synthesis (TTS)

� Dialog systems

� Language processing technologies
� Machine translation

� Information extraction

� Web search, question answering

� Text classification, spam filtering, etc…
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HMMs: MLE Queries

� HMMs defined by
� States X

� Observations E

� Initial distr:

� Transitions:

� Emissions:

� Query: most likely 
explanation:

XX2

E1

X1 X3 X4

E2 E3 E4 E
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State Path Trellis

� State trellis: graph of states and transitions over time

� Each arc represents some transition

� Each arc has weight

� Each path is a sequence of states

� The product of weights on a path is the seq’s probability

� Can think of the Forward (and now Viterbi) algorithms as 

computing sums of all paths (best paths) in this graph
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Viterbi Algorithm
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Example
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� Details of this section not required

� Start machine learning
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Digitizing Speech
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Speech in an Hour

� Speech input is an acoustic wave form

s             p       ee         ch           l     a          b

Graphs from Simon Arnfield’s web tutorial on speech, Sheffield:

http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/

“l” to “a”

transition:
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� Frequency gives pitch; amplitude gives volume

� sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec)

� Fourier transform of wave displayed as a spectrogram

� darkness indicates energy at each frequency

s             p       ee         ch           l     a          b

Spectral Analysis
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Adding 100 Hz + 1000 Hz Waves

Time (s)
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Part of [ae] from “lab”

� Note complex wave repeating nine times in figure

� Plus smaller waves which repeats 4 times for every large 
pattern

� Large wave has frequency of 250 Hz (9 times in .036 
seconds)

� Small wave roughly 4 times this, or roughly 1000 Hz

� Two little tiny waves on top of peak of 1000 Hz waves
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Back to Spectra

� Spectrum represents these freq components

� Computed by Fourier transform, algorithm which 

separates out each frequency component of wave. 

� x-axis shows frequency, y-axis shows magnitude (in 

decibels, a log measure of amplitude)

� Peaks at 930 Hz, 1860 Hz, and 3020 Hz.
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Resonances of the vocal tract

� The human vocal tract as an open 
tube

� Air in a tube of a given length will 
tend to vibrate at resonance 
frequency of tube. 

� Constraint: Pressure differential 
should be maximal at (closed) glottal 
end and minimal at (open) lip end.

Closed end Open end

Length 17.5 cm.

Figure from W. Barry Speech Science slides
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From

Mark

Liberman’s

website
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Acoustic Feature Sequence

� Time slices are translated into acoustic feature 
vectors (~39 real numbers per slice)

� These are the observations, now we need the 
hidden states X

……………………………………………..e12e13e14e15e16………..

29

State Space

� P(E|X) encodes which acoustic vectors are appropriate 

for each phoneme (each kind of sound)

� P(X|X’) encodes how sounds can be strung together 

� We will have one state for each sound in each word

� From some state x, can only:

� Stay in the same state (e.g. speaking slowly)

� Move to the next position in the word

� At the end of the word, move to the start of the next word

� We build a little state graph for each word and chain 

them together to form our state space X
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HMMs for Speech
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Decoding

� While there are some practical issues, finding the words 

given the acoustics is an HMM inference problem

� We want to know which state sequence x1:T is most likely 

given the evidence e1:T:

� From the sequence x, we can simply read off the words
33
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End of Part II!

� Now we’re done with our unit on 

probabilistic reasoning

� Last part of class: machine learning
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Parameter Estimation

� Estimating the distribution of a random variable

� Elicitation: ask a human!
� Usually need domain experts, and sophisticated ways of eliciting 

probabilities (e.g. betting games)

� Trouble calibrating

� Empirically: use training data
� For each outcome x, look at the empirical rate of that value:

� This is the estimate that maximizes the likelihood of the data

r g g


